Tanning

From Robin's SM-201 Website
Jump to navigation Jump to search

Tanning is the process of converting putrescible skin into non-putrescible leather, usually with tannin, an acidic chemical compound that prevents decomposition and often imparts color.

Chrome tanning

Chromium(III) sulfate ([Cr(H2O)6]2(SO4)3) has long been regarded as the most efficient and effective tanning agent. Chromium(III) compounds of the sort used in tanning are significantly less toxic than hexavalent chromium, although the latter arises in inadequate waste treatment. Chromium(III) sulfate dissolves to give the hexaaquachromium(III) cation, [Cr(H2O)6]3+, which at higher pH undergoes processes called olation to give polychromium(III) compounds that are active in tanning,[12] being the cross-linking of the collagen subunits. The chemistry of [Cr(H2O)6]3+ is more complex in the tanning bath rather than in water due to the presence of a variety of ligands. Some ligands include the sulfate anion, the collagen's carboxyl groups, amine groups from the side chains of the amino acids, and masking agents. Masking agents are carboxylic acids, such as acetic acid, used to suppress formation of polychromium(III) chains. Masking agents allow the tanner to further increase the pH to increase collagen's reactivity without inhibiting the penetration of the chromium(III) complexes.

Collagen is characterized by a high content of glycine, proline, and hydroxyproline, usually in the repeat -gly-pro-hypro-gly-. These residues give rise to collagen's helical structure. Collagen's high content of hydroxyproline allows cross-linking by hydrogen bonding within the helical structure. Ionized carboxyl groups (RCO2−) are formed by the action of hydroxide. This conversion occurs during the liming process, before introduction of the tanning agent (chromium salts). Later during pickling, collagen carboxyl groups are temporarily protonated for ready transport of chromium ions. During basification step of tanning, the carboxyl groups are ionized and coordinate as ligands to the chromium(III) centers of the oxo-hydroxide clusters.

Tanning increases the spacing between protein chains in collagen from 10 to 17 Å. The difference is consistent with cross-linking by polychromium species, of the sort arising from olation and oxolation.

Before the introduction of the basic chromium species in tanning, several steps are required to produce a tannable hide. The pH must be very acidic when the chromium is introduced to ensure that the chromium complexes are small enough to fit between the fibers and residues of the collagen. Once the desired level of penetration of chrome into the substance is achieved, the pH of the material is raised again to facilitate the process. This step is known as basification. In the raw state, chrome-tanned skins are greyish-blue, so are referred to as wet blue. Chrome tanning is faster than vegetable tanning (taking less than a day for this part of the process) and produces stretchable leather which is excellent for use in handbags and garments.

After the application of the chromium agent, the bath is treated with sodium bicarbonate in the basification process to increase the pH to 3.8–4.0, inducing cross-linking between the chromium and the collagen. The pH increase is normally accompanied by a gradual temperature increase up to 40 °C. Chromium's ability to form such stable bridged bonds explains why it is considered one of the most effective tanning compounds. Chromium-tanned leather can contain between 4 and 5% of chromium. This efficiency is characterized by its increased hydrothermal stability of the skin, and its resistance to shrinkage in heated water.

Vegetable tanning

Vegetable tanning uses tannins (a class of polyphenol astringent chemicals), which occur naturally in the bark and leaves of many plants. Tannins bind to the collagen proteins in the hide and coat them, causing them to become less water-soluble and more resistant to bacterial attack. The process also causes the hide to become more flexible. The primary barks processed in bark mills and used in modern times are chestnut, oak, redoul, tanoak, hemlock, quebracho, mangrove, wattle (acacia; see catechol), and myrobalans from Terminalia spp., such as Terminalia chebula. In Ethiopia, the combined vegetable oils of Niger seed (Guizotia abyssinica) and flaxseeds were used in treating the flesh side of the leather. In Yemen and Egypt, hides were cured by soaking them in a bath containing the crushed leaves and bark of the Salam acacia (Acacia etbaica; A. nilotica kraussiana). Hides that have been stretched on frames are immersed for several weeks in vats of increasing concentrations of tannin. The vegetable-tanned hide is not very flexible. It is used for luggage, furniture, footwear, belts, and other clothing accessories.

Alternative chemicals

Wet white is a term used for leathers produced using alternative tanning methods that produce off-white colored leather. Like wet blue, wet white is also a semi-finished stage. Wet white can be produced using aldehydes, aluminum, zirconium, titanium, or iron salts, or a combination thereof. Concerns with the toxicity and environmental impact of any chromium (VI) that may form during the tanning process have led to increased research into more efficient wet-white methods.

Natural tanning

The conditions present in bogs, including highly acidic water, low temperature, and a lack of oxygen, combine to preserve but severely tan the skin of bog bodies.

Tawing

Tawing is a method that uses alum and other aluminum salts, generally in conjunction with binders such as egg yolk, flour, or other salts. The hide is tawed by soaking in a warm potash alum and salts solution, between 20 and 30 °C. The process increases the hide's pliability, stretchability, softness, and quality. Then, the hide is air-dried (crusted) for several weeks, which allows it to stabilize.

Post-tanning finishing

Depending on the finish desired, the leather may be waxed, rolled, lubricated, injected with oil, split, shaved, or dyed.

Depending on the finish desired, the hide may be waxed, rolled, lubricated, injected with oil, split, shaved and, of course, dyed. Suedes, Nubucks, etc. are finished by raising the nap of the leather by rolling with a rough surface.

See also [ Health and environmental impact ]

Articles related to leather working
See also:
Leather subcultureLeather clothing
Types
Aniline leather • Bicast • Boiled • Bonded • Buckskin (leather) • Chamois • Corinthian • Kidskin • Law leather • Morocco leather • Napa • Nubuck • Patent leather • Russia • Shagreen • Shell cordovan • Suede
Substitutes
Artificial leatherAlcantaraLeatheretteNaugahydePresstoffSynthetic leatherUltrasuede
Leather sources
AlligatorBisonCattleCalfskinSlunk • Deer • Eel • Goat • Horse • Kangaroo • Ostrich • Domestic pig • Sealskin • Sheep • Yak
Processes
LimingDelimingTanningOilingBritish Museum leather dressing
Crafting
BookbindingCuir de CordoueLeather carving
Hardware
Conway clipOhio Travel BagSto-rexTandy Leather
Tools
DubbinSaddle soap
Leather museums
German Leather MuseumIgualada Leather MuseumWalsall Leather Museum
Leather Archives and Museum
Related
History of hide materialsLeather subculture
Chain-09.png
Jump to: Main PageMicropediaMacropediaIconsTime LineHistoryLife LessonsLinksHelp
Chat roomsWhat links hereCopyright infoContact informationCategory:Root