Polyester

From Robin's SM-201 Website
Jump to navigation Jump to search

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

Polyester fibers are sometimes spun together with natural fibers to produce a cloth with blended properties. Cotton-polyester blends can be strong, wrinkle- and tear-resistant, and reduce shrinking. Synthetic fibers using polyester have high water, wind, and environmental resistance compared to plant-derived fibers. They are less fire-resistant and can melt when ignited.

Liquid crystalline polyesters are among the first industrially used liquid crystal polymers. They are used for their mechanical properties and heat resistance. These traits are also important in their application as an abradable seal in jet engines.

Natural polyesters could have played a significant role in the origins of life. Long heterogeneous polyester chains and membraneless structures are known to easily form in a one-pot reaction without catalyst under simple prebiotic conditions.

History

In 1926, United States-based E.I. du Pont de Nemours and Co. began research on large molecules and synthetic fibers. This early research, headed by W.H. Carothers, centered on what became nylon, which was one of the first synthetic fibers. Carothers was working for DuPont at the time. Carothers' research was incomplete and had not advanced to investigating the polyester formed from mixing ethylene glycol and terephthalic acid. In 1928 polyester was patented in Britain by the International General Electric company. Carothers' project was revived by British scientists Whinfield and Dickson, who patented polyethylene terephthalate (PET) or PETE in 1941. Polyethylene terephthalate forms the basis for synthetic fibers like Dacron, Terylene and polyester. In 1946, duPont bought all legal rights from Imperial Chemical Industries (ICI).

Uses and applications

Fabrics woven or knitted from polyester thread or yarn are used extensively in apparel and home furnishings, from shirts and pants to jackets and hats, bed sheets, blankets, upholstered furniture, and computer mouse mats. Industrial polyester fibers, yarns, and ropes are used in car tire reinforcements, fabrics for conveyor belts, safety belts, coated fabrics, and plastic reinforcements with high-energy absorption. Polyester fiber is used as cushioning and insulating material in pillows, comforters, and upholstery padding. Polyester fabrics are highly stain-resistant—in fact, the only class of dyes which can be used to alter the color of polyester fabric are what are known as disperse dyes.

Polyesters are also used to make bottles, films, tarpaulin, sails (Dacron), canoes, liquid crystal displays, holograms, filters, dielectric film for capacitors, film insulation for wire, and insulating tapes. Polyesters are widely used as a finish on high-quality wood products such as guitars, pianos, and vehicle/yacht interiors. Thixotropic properties of spray-applicable polyesters make them ideal for use on open-grain timbers, as they can quickly fill wood grain, with a high-build film thickness per coat. Cured polyesters can be sanded and polished to a high-gloss, durable finish.

More information is available at [ Wikipedia:Polyester ]
Chain-09.png
Jump to: Main PageMicropediaMacropediaIconsTime LineHistoryLife LessonsLinksHelp
Chat roomsWhat links hereCopyright infoContact informationCategory:Root